74 research outputs found

    Source Mechanism of Small Long-Period Events at Mount St. Helens in July 2005 Using Template Matching, Phase-Weighted Stacking, and Full-Waveform Inversion

    Get PDF
    Long-period (LP, 0.5-5 Hz) seismicity, observed at volcanoes worldwide, is a recognized signature of unrest and eruption. Cyclic LP “drumbeating” was the characteristic seismicity accompanying the sustained dome-building phase of the 2004–2008 eruption of Mount St. Helens (MSH), WA. However, together with the LP drumbeating was a near-continuous, randomly occurring series of tiny LP seismic events (LP “subevents”), which may hold important additional information on the mechanism of seismogenesis at restless volcanoes. We employ template matching, phase-weighted stacking, and full-waveform inversion to image the source mechanism of one multiplet of these LP subevents at MSH in July 2005. The signal-to-noise ratios of the individual events are too low to produce reliable waveform inversion results, but the events are repetitive and can be stacked. We apply network-based template matching to 8 days of continuous velocity waveform data from 29 June to 7 July 2005 using a master event to detect 822 network triggers. We stack waveforms for 359 high-quality triggers at each station and component, using a combination of linear and phase-weighted stacking to produce clean stacks for use in waveform inversion. The derived source mechanism points to the volumetric oscillation (∼10 m3) of a subhorizontal crack located at shallow depth (∼30 m) in an area to the south of Crater Glacier in the southern portion of the breached MSH crater. A possible excitation mechanism is the sudden condensation of metastable steam from a shallow pressurized hydrothermal system as it encounters cool meteoric water in the outer parts of the edifice, perhaps supplied from snow melt

    Co-Eruptive Tremor from Bogoslof Volcano: Seismic Wavefield Composition at Regional Distances

    Get PDF
    We analyze seismic tremor recorded during eruptive activity over the course of the 2016–2017 eruption of Bogoslof volcano, Alaska. Only regional recordings of the tremor wavefield exist for Bogoslof, making it a challenge to place the recordings in context with other eruptions that are normally captured by local seismic data. We apply a technique of time-frequency polarization analysis to three-component seismic data to reveal the wavefield composition of Bogoslof eruption tremor.We find that at regional distances, the tremor is dominated by P-waves in the band from 1.5 to 10 Hz. Using this information, along with an enriched Bogoslof earthquake catalog, we obtain estimates of average reduced displacement (DR) for eruption tremor during 25 of the 70 Bogoslof events. DR reaches as high as approximately 40 cm2 for two of the major events, similar to other VEI~3 eruptions in Alaska. Overall, average reduced displacement displays a weak correlation to plume height during the first half of the 9-month-long eruption sequence, with a few notable exceptions. The two events with the highest DR values also generated measurable eruption tremor at very-long-periods (VLP) between 0.05 and 0.15 Hz

    Local, Regional, and Remote Seismo‐Acoustic Observations of the April 2015 VEI 4 Eruption of Calbuco Volcano, Chile

    Get PDF
    The two major explosive phases of the 22–23 April 2015 eruption of Calbuco volcano, Chile, produced powerful seismicity and infrasound. The eruption was recorded on seismo-acoustic stations out to 1,540 km and on five stations (IS02, IS08, IS09, IS27, and IS49) of the International Monitoring System (IMS) infrasound network at distances from 1,525 to 5,122 km. The remote IMS infrasound stations provide an accurate explosion chronology consistent with the regional and local seismo-acoustic data and with previous studies of lightning and plume observations. We use the IMS network to detect and locate the eruption signals using a brute-force, grid-search, cross-bearings approach. After incorporating azimuth deviation corrections from stratospheric crosswinds using 3-D ray tracing, the estimated source location is 172 km from true. This case study highlights the significant capability of the IMS infrasound network to provide automated detection, characterization, and timing estimates of global explosive volcanic activity. Augmenting the IMS with regional seismo-acoustic networks will dramatically enhance volcanic signal detection, reduce latency, and improve discrimination capability

    Seismic and infrasonic source processes in volcanic fluid systems

    No full text
    Volcanoes exhibit a spectacular diversity in fluid oscillation processes, which lead to distinct seismic and acoustic signals in the solid earth and atmosphere. Volcano seismic waveforms contain rich information on the geometry of fluid migration, resonance effects, and transient and sustained pressure oscillations resulting from unsteady flow through subsurface cracks, fissures and conduits. Volcanic sounds contain information on shallow fluid flow, resonance in near-surface cavities, and degassing dynamics into the atmosphere. Since volcanoes have large spatial scales, the vast majority of their radiated atmospheric acoustic energy is infrasonic (<20 Hz). This dissertation presents observations from joint broadband seismic and infrasound array deployments at Mount St.\ Helens (MSH, Washington State, USA), Tungurahua (Ecuador), and Kilauea Volcano (Hawaii, USA), each providing data for several years. These volcanoes represent a broad spectrum of eruption styles ranging from hawaiian to plinian in nature. The catalogue of recorded infrasonic signals includes continuous broadband and harmonic tremor from persistent degassing at basaltic lava vents and tubes at Puù \={O}\̀={o} (Kilauea), thousands of repetitive impulsive signals associated with seismic long- period (0.5-5 Hz) events and the dynamics of the shallow hydrothermal system at MSH, rockfall signals from the unstable dacite dome at MSH, energetic explosion blast waves and gliding infrasonic harmonic tremor at Tungurahua volcano, and large-amplitude and long-duration broadband signals associated with jetting during vulcanian, subplinian and plinian eruptions at MSH and Tungurahua. We develop models for a selection of these infrasonic signals. For infrasonic long-period (LP) events at MSH, we investigate seismic-acoustic coupling from various buried source configurations as a means to excite infrasound waves in the atmosphere. We find that linear elastic seismic-acoustic transmission from the ground to atmosphere is inadequate to explain the observations, and propose that the signals may result from sudden containment failure of a pressurized hydrothermal crack. For the broadband eruption tremor signals, we propose that the infrasonic signals represent a low-frequency form of jet noise, analogous to the noise from man-made jet engines, but operating with larger spatial scales and consequently longer time-scales. For the persistent hawaiian tremor signals, we propose that bubble cloud oscillation in the upper section of a roiling magma conduit and vortex dynamics in the shallow degassing region act as broadband and harmonic tremor sources. We also consider infrasound propagation effects in a dynamic atmosphere and discuss their effects on recorded signals. This dissertation demonstrates that combined seismic and infrasonic data provide complementary perspectives on eruptive activit

    An Infrasound Array Study of Mount St. Helens

    No full text
    corecore